Powerful Opportunity

FuelCell Energy's On-site Power Generation Solutions –

A Near Zero Emissions Technology Available Today

Distributed Generation and Combined Heat and Power Workshop

May 13-15, 2003 • Radisson Hotel • Newport Beach, CA

Agenda

- Fuel Cell Power Generation Technologies
 - Advantages of Direct FuelCell® Technology
 - CHP Applications
- Benefits of Direct FuelCell® Technology and Target Markets
- Challenges and Opportunities

Who is FuelCell Energy?

- A leading fuel cell technology developer for over 30 years
- Headquarted in Danbury, CT;Manufacturing Facilities in Torrington, CT
- 425 Employees; 160 new hires in 2002
- Over \$400 million invested in fuel cell technology development
- Manufacturing, testing and conditioning facility expanded to accommodate over 50 MW
- Going to market now with advanced Direct FuelCell® technology
- Over 10 million kWh generated to date;7 million kWh at customer sites

Fuel Cell Power Generation Technologies

Advantages of Direct FuelCell®

Fuel Cell Stationary Power Generation Offerings

		Fuel Cell Type			
		Polymer Electrolyte Membrane	Phosphoric Acid	Carbonate Direct Fuel Cell®	Solid Oxide
1	Electrolyte	Ion Exchange Membrane	Phosphoric Acid	Alkali Carbonate	Yttria Stabilized Zirconia
	Operating Temp. °F	200	400	1200	1800
	Charge Carrier	H ⁺	H ⁺	CO ₃ =	O=
+	Cell Hardware	Carbon /Metal Based	Graphite	Stainless Steel	Ceramic
	Catalyst	Platinum	Platinum	Nickel	Perovskites

Direct FuelCell® - Hydrogen Benefits Without External Reforming

Direct FuelCell® Technology Advantage

High Temperature Internal Reforming Direct FuelCell® AIR

Low Temperature External Reforming Fuel Cell

- Optimal Operating Temperature
 - Uses commonly available materials
 - No noble metal catalyst
 - High temperature by-product heat
- Internal Reforming
 - High electrical efficiency (47%)
 - Simpler system
 - Negligible NO_x
 - Reduced cooling requirement
- Atmospheric Pressure Operation
 - Allows unattended operation
 - More reliable

Direct FuelCell® Components

FuelCell Energy Products

 Building block approach provides scalability and a standardized product to manufacture

Sub-MW Power Plant

MW Power Plant

FuelCell Energy Current Products – 250kW-10MW

DFC® 300

DFC® 1500

Product Characteristics

- High temperature, carbonate fuel cell power plants for base load commercial and industrial applications
- High electrical efficiency
- High value waste heat by-product for cogeneration
- Internally generated hydrogen from readily available fuels such as natural gas – operating at customer sites today

Multi-MW Grid Support

DFC®300 Layout

	DFC®300
Length (ft)	28.0
Width (ft)	10.5
Height (ft)	11.0
Footprint (ft²)	294
Weight	43 tons

DFC®1500 Layout

DFC®1500

Net Power & Efficiency (LHV)

Current Products	DFC®300	DFC®1500	DFC®3000
Power, kW	250	1,000	2,000
Efficiency	47%	48%	49%
Heat Rate (Btu/kWh)	7,260	7,110	6,965

2005 Products /Restacks	DFC®300	DFC®1500	DFC®3000
Power, kW	300	1,200	2,400
Efficiency	51%	52%	53%
Heat Rate (Btu/kWh)	6,690	6,565	6,440

Plant Operating Characteristics – Design Life

- Design Life 30 years
- Initial Stack Life 3 to 5 years (25,000 hours)
- Subsequent Stack Life 5 years (40,000 hours)
- Economic decision drives restack
- Restack Output 300, 1500 and 2000 kW
- BOP designed for higher rating
- Initial Output/Efficiency Degradation 3% per year
- Restack Output/Efficiency Degradation 2% per year

DFC Applications – Cogeneration/CHP

Standard Production Equipment Available

FuelCell Energy

Exhaust Heat Output and CHP Production

- Standard exhaust connection
- High grade heat
 - **EGT 750°F**
- Total Exhaust Heat
 - ▶ 585 660 MBH (DFC®300)
- Allowable back pressure
 - < 2 inches water column (i.w.c.)</p>

	DFC®300	DFC®1500	DFC®3000
Hot Water	410,000	1,840,000	3,640,000
Btu/hr @ ΔT	@ 20°F	@ 100°F	@ 70°F
Steam, pph 15 psig, sat.	430	1,700	3,300
Chilled Water - tons	35	160	315

DFC Applications - Digester Gas

- Digesters treat sewage sludge, animal manure or agricultural waste
- Produce CH4 and CO2
 - ~60-65% CH4
 - → 500-1500 ppm H2S (sewage)
- Digesters require heat input to maintain optimum temperature (~98 F)

Benefits of Direct FuelCell® Technology and Target Markets

Direct FuelCell® Technology Conserves Energy Resources

Unmatched Emissions Performance of DFC Power Plants

- Fuel cells meet CARB's stringent 2007 emissions standards for DG
 - 0.006 lbs/MW-hr of NOx
 - 0.0007 lbs/MW-hr of SO2
 - 0.0028 lbs/MW-hr of CO

Source: NETL(http://www.eren.doe.gov/der/pdfs/mid_atlantic_conf_02/williams.pdf)

Significant CO2 Emissions Displacement

- A DFC300 power plant displaces CO2 emissions when compared to an average natural gas-fired power plant equivalent to taking over 100 cars off the road
 - CAFE standard automobile efficiency: 27.5 mpg
 - 12,000 miles per year

Target Customers

- Institutional
 - Hospitals
 - Universities
- Commercial
 - Hotels
 - Data Centers
 - Office/Shopping
- Industrial
 - Waste Water
 - Telecom
 - Food & Beverage
 - Chemical
 - Manufacturing
- Utility
 - Grid-support

Waste Water Treatment Facilities – A Unique Opportunity

- Uses anaerobic digester gas from industrial and municipal waste water treatment facilities
- Use of "bio" gas makes this a "renewable" application.
- King County. Kirin Brewery and Terminal Island (pictured here)

Over 500 MW Waste Water Fuel Cell Installations by 2011*

^{* -} Allied Business Intelligence's 2001 Study, "Stationary Fuel Cells: U.S. and Global Early Market Opportunities."

Challenges and Opportunities

First Cost Challenge – Biggest Barrier for Fuel Cells Today

- > Cap cost amortized 15 yrs @ 8%
- > Baseload operation; No value assigned to recovered heat
- $Fuel\ cost = \$4.00 \$5.00 / MMBtu$

Distributed Energy Generation

First Cost Challenge – Size Helps Overcome Barrier

Incentive Programs in CA - Bridging the First Cost Gap

7	Program	Sponsoring Agency	Funds (MM\$/yr)	Eligibility Criteria	Incentive Structure
	Self Generation Program	CA Public Utility Commission	\$125 through 2004	 Fuel cells, photovoltaic, wind, turbines, engines Up to 1 MW Grid connected Cogen heat recovery Commercial sales vs. demonstrations 	Direct Rebate: \$4,500/kW for landfill gas or biogas fueled fuel cells up to 50% of project cosf \$2,500/kW for nat gas fueled fuel cells up to 40% of project cost
	Emerging Renewables Buy Down	CA Energy Commission	\$101	 Photovoltaic, small wind solar thermal, and fuel cells using renewable fuels Projects up to 1.0 MW 5-yr equipment warranty 	Direct Rebate: \$4,500 /kW up to 50% of total cost
	Technology Advancement	SAQMD	\$20MM	Co-funding of clean air technologies (fuel cells)	\$100,000-\$1,000,000 grant awards
	Public Leadership Solutions for Energy Fund	CA Power Authority	\$1000MM initially	■Federal, state and local public agencies, community colleges and school districts	4.5-5% financing for agencies to undertake DG or energy efficiency projects

United States Federal Programs – Enabling Deployment in Other States

- Department of Defense Climate Change Program
 - **\$2.8MM, 2003**
 - ▶ \$1,000/kW rebate
 - Administered by DOE NETL
 - June 03 solicitation
 - September 03 awards
 - <u>www.dodfuelcell.com/climate/index.html</u>
- Federal Energy Bill
 - 35% tax credit for fuel cells being proposed

Cost of Electricity in CA with Incentives: DFC300

- > Cap cost amortized 15 yrs @ 8%
- > Baseload operation; No value assigned to recovered heat
- Fuel cost = \$4.00 \$5.00 / MMBtu

Cost of Electricity in CA with Incentives: DFC1500

- >Cap cost amortized 15 yrs @ 8%
- > Baseload operation; No value assigned to recovered heat
- > Fuel cost = \$4.00 / MMBtu

Distributed Energy Generation

Driving Cost out Fuel Cell Manufacturing Process

Established Manufacturing Processes

Tape Casting

Sintering

Lamination

Readily Available Materials

- Stainless Steel
- Nickel
- Ceramic Powders
- Carbonates (common minerals)

Cost Reduction

- Manufacturing Volume
- Elimination of First Costs
- Performance Improvements
- Manufacturing Improvements
- 25-35% Realized to Date

FuelCell Energy® Stationary Power Plants – Ready Today

- Established technology, defined product lines
- ■Economically viable (with incentives) nearzero emissions technology in CA and NY
- Ability to leverage existing natural gas infrastructure and still deliver environmental benefits associated with H2
- **■Well-defined end markets**

Powerful Opportunity

